learn-oracle





Oracle Database Architecture


PREVIOUS CHAPTER | NEXT CHAPTER

An Oracle database is a collection of data treated as a unit. The purpose of a database is to store and retrieve related information. A database server is the key to solving the problems of information management. In general, a server reliably manages a large amount of data in a multiuser environment so that many users can concurrently access the same data. All this is accomplished while delivering high performance. A database server also prevents unauthorized access and provides efficient solutions for failure recovery.

Oracle Database is the first database designed for enterprise grid computing, the most flexible and cost effective way to manage information and applications. Enterprise grid computing creates large pools of industry-standard, modular storage and servers. With this architecture, each new system can be rapidly provisioned from the pool of components. There is no need for peak workloads, because capacity can be easily added or reallocated from the resource pools as needed.

The database has logical structures and physical structures. Because the physical and logical structures are separate, the physical storage of data can be managed without affecting the access to logical storage structures.

Physical Database Structure
Logical Database Structure
Oracle Instance

Physical Database Structures

Datafiles

Every Oracle database has one or more physical datafiles. The datafiles contain all the database data. The data of logical database structures, such as tables and indexes, is physically stored in the datafiles allocated for a database.

The characteristics of datafiles are:

A datafile can be associated with only one database.

Datafiles can have certain characteristics set to let them automatically extend when the database runs out of space.

One or more datafiles form a logical unit of database storage called a tablespace.

Data in a datafile is read, as needed, during normal database operation and stored in the memory cache of Oracle. For example, assume that a user wants to access some data in a table of a database. If the requested information is not already in the memory cache for the database, then it is read from the appropriate datafiles and stored in memory. Modified or new data is not necessarily written to a datafile immediately.

Control Files

Every Oracle database has a control file. A control file contains entries that specify the physical structure of the database. For example, it contains the following information:

Database name

Names and locations of datafiles and redo log files

Time stamp of database creation

Oracle DBA can multiplex the control file, that is, simultaneously maintain a number of identical control file copies, to protect against a failure involving the control file.

Every time an instance of an Oracle database is started, its control file identifies the database and redo log files that must be opened for database operation to proceed. If the physical makeup of the database is altered (for example, if a new datafile or redo log file is created), then the control file is automatically modified by Oracle to reflect the change. A control file is also used in database recovery.

Redo Log Files

Every Oracle database has a set of two or more redo log files. The set of redo log files is collectively known as the redo log for the database. A redo log is made up of redo entries (also called redo records).

The primary function of the redo log is to record all changes made to data. If a failure prevents modified data from being permanently written to the datafiles, then the changes can be obtained by Oracle DBA from the redo log, so work is never lost.

To protect against a failure involving the redo log itself, Oracle allows a multiplexed redo log so that two or more copies of the redo log can be maintained on different disks.

The information in a redo log file is used only to recover the database from a system or media failure that prevents database data from being written to the datafiles. For example, if an unexpected power outage terminates database operation, then data in memory cannot be written to the datafiles, and the data is lost. However, lost data can be recovered when the database is opened, after power is restored. By applying the information in the most recent redo log files to the database datafiles, Oracle restores the database to the time at which the power failure occurred.

The process of applying the redo log during a recovery operation is called rolling forward.

Archive Log Files

Oracle DBA can enable automatic archiving of the redo log. Oracle automatically archives log files when the database is in ARCHIVELOG mode.

Parameter Files

Parameter files contain a list of configuration parameters for that instance and database.

Oracle recommends that Oracle DBA create a server parameter file (SPFILE) as a dynamic means of maintaining initialization parameters. A server parameter file lets Oracle DBA store and manage your initialization parameters persistently in a server-side disk file.

Logical Database Structures

The logical storage structures, including data blocks, extents, and segments, enable Oracle to have fine-grained control of disk space use.

Tablespaces

A database is divided into logical storage units called tablespaces, which group related logical structures together. For example, tablespaces commonly group together all application objects to simplify some administrative operations.

Each database is logically divided into one or more tablespaces. One or more datafiles are explicitly created for each tablespace to physically store the data of all logical structures in a tablespace. The combined size of the datafiles in a tablespace is the total storage capacity of the tablespace.

Every Oracle database contains a SYSTEM tablespace and a SYSAUX tablespace. Oracle creates them automatically when the database is created. The system default is to create a smallfile tablespace, which is the traditional type of Oracle tablespace. The SYSTEM and SYSAUX tablespaces are created as smallfile tablespaces.

Oracle also lets Oracle DBA create bigfile tablespaces. This allows Oracle Database to contain tablespaces made up of single large files rather than numerous smaller ones. This lets Oracle Database utilize the ability of 64-bit systems to create and manage ultralarge files. The consequence of this is that Oracle Database can now scale up to 8 exabytes in size. With Oracle-managed files, bigfile tablespaces make datafiles completely transparent for users. In other words, Oracle DBA can perform operations on tablespaces, rather than the underlying datafiles

Online and Offline Tablespaces

A tablespace can be online (accessible) or offline (not accessible). A tablespace is generally online, so that users can access the information in the tablespace. However, sometimes a tablespace is taken offline to make a portion of the database unavailable while allowing normal access to the remainder of the database. This makes many administrative tasks easier to perform.

Oracle Data Blocks

At the finest level of granularity, Oracle database data is stored in data blocks. One data block corresponds to a specific number of bytes of physical database space on disk. The standard block size is specified by the DB_BLOCK_SIZE initialization parameter. In addition, Oracle DBA can specify up to five other block sizes. A database uses and allocates free database space in Oracle data blocks.

Extents

The next level of logical database space is an extent. An extent is a specific number of contiguous data blocks, obtained in a single allocation, used to store a specific type of information.

Segments

Above extents, the level of logical database storage is a segment. A segment is a set of extents allocated for a certain logical structure

Oracle Instance

An Oracle database server consists of an Oracle database and an Oracle instance. Every time a database is started, a system global area (SGA) is allocated and Oracle background processes are started. The combination of the background processes and memory buffers is called an Oracle instance

Real Application Clusters: Multiple Instance Systems&

Some hardware architectures (for example, shared disk systems) enable multiple computers to share access to data, software, or peripheral devices. Real Application Clusters (RAC) takes advantage of such architecture by running multiple instances that share a single physical database. In most applications, RAC enables access to a single database by users on multiple computers with increased performance.

An Oracle database server uses memory structures and processes to manage and access the database. All memory structures exist in the main memory of the computers that constitute the database system. Processes are jobs that work in the memory of these computers.   Instance Memory Structures

Oracle creates and uses memory structures to complete several jobs. For example, memory stores program code being run and data shared among users. Two basic memory structures are associated with Oracle: the system global area and the program global area. The following subsections explain each in detail.

System Global Area

The System Global Area (SGA) is a shared memory region that contains data and control information for one Oracle instance. Oracle allocates the SGA when an instance starts and deallocates it when the instance shuts down. Each instance has its own SGA.

Users currently connected to an Oracle database share the data in the SGA. For optimal performance, the entire SGA should be as large as possible (while still fitting in real memory) to store as much data in memory as possible and to minimize disk I/O.

The information stored in the SGA is divided into several types of memory structures, including the database buffers, redo log buffer, and the shared pool.

Database Buffer Cache of the SGA

Database buffers store the most recently used blocks of data. The set of database buffers in an instance is the database buffer cache. The buffer cache contains modified as well as unmodified blocks. Because the most recently (and often, the most frequently) used data is kept in memory, less disk I/O is necessary, and performance is improved.

Redo Log Buffer of the SGA

The redo log buffer stores redo entries—a log of changes made to the database. The redo entries stored in the redo log buffers are written to an online redo log, which is used if database recovery is necessary. The size of the redo log is static.

Shared Pool of the SGA

The shared pool contains shared memory constructs, such as shared SQL areas. A shared SQL area is required to process every unique SQL statement submitted to a database. A shared SQL area contains information such as the parse tree and execution plan for the corresponding statement. A single shared SQL area is used by multiple applications that issue the same statement, leaving more shared memory for other uses

Statement Handles or Cursors

A cursor is a handle or name for a private SQL area in which a parsed statement and other information for processing the statement are kept. (Oracle Call Interface, OCI, refers to these as statement handles.) Although most Oracle users rely on automatic cursor handling of Oracle utilities, the programmatic interfaces offer application designers more control over cursors.

For example, in precompiler application development, a cursor is a named resource available to a program and can be used specifically to parse SQL statements embedded within the application. Application developers can code an application so it controls the phases of SQL statement execution and thus improves application performance.

Program Global Area

The Program Global Area (PGA) is a memory buffer that contains data and control information for a server process. A PGA is created by Oracle when a server process is started. The information in a PGA depends on the Oracle configuration

Oracle Background Processes

An Oracle database uses memory structures and processes to manage and access the database. All memory structures exist in the main memory of the computers that constitute the database system. Processes are jobs that work in the memory of these computers.

The architectural features discussed in this section enable the Oracle database to support:

Many users concurrently accessing a single database

The high performance required by concurrent multiuser, multiapplication database systems

Oracle creates a set of background processes for each instance. The background processes consolidate functions that would otherwise be handled by multiple Oracle programs running for each user process. They asynchronously perform I/O and monitor other Oracle process to provide increased parallelism for better performance and reliability.

There are numerous background processes, and each Oracle instance can use several background processes.

Process Architecture

A process is a "thread of control" or a mechanism in an operating system that can run a series of steps. Some operating systems use the terms job or task. A process generally has its own private memory area in which it runs.

An Oracle database server has two general types of processes: user processes and Oracle processes.

User (Client) Processes

User processes are created and maintained to run the software code of an application program (such as an OCI or OCCI program) or an Oracle tool (such as Enterprise Manager). User processes also manage communication with the server process through the program interface, which is described in a later section.

Oracle Processes

Oracle processes are invoked by other processes to perform functions on behalf of the invoking process.

Oracle creates server processes to handle requests from connected user processes. A server process communicates with the user process and interacts with Oracle to carry out requests from the associated user process. For example, if a user queries some data not already in the database buffers of the SGA, then the associated server process reads the proper data blocks from the datafiles into the SGA.

Oracle can be configured to vary the number of user processes for each server process. In a dedicated server configuration, a server process handles requests for a single user process. A shared server configuration lets many user processes share a small number of server processes, minimizing the number of server processes and maximizing the use of available system resources.

On some systems, the user and server processes are separate, while on others they are combined into a single process. If a system uses the shared server or if the user and server processes run on different computers, then the user and server processes must be separate. Client/server systems separate the user and server processes and run them on different computers.

PREVIOUS CHAPTER | NEXT CHAPTER

STEP 1 - Next Topics
This contains a brief overview of Oracle database administration. Learn Oracle DBA Step 1 by clicking links below:
What is a Oracle Database?Oracle DBA
Common Oracle DBA TasksOracle DBA
Tools for Administering the DatabaseOracle DBA
Oracle Database ArchitectureOracle DBA
How Oracle Works

More Tutorials on Oracle dba ...

Source : Oracle Documentation

Liked it ? Want to share it ? Social Bookmarking

Add to: Mr. Wong Add to: BoniTrust Add to: Newsider Add to: Digg Add to: Del.icio.us Add to: Reddit Add to: Jumptags Add to: StumbleUpon Add to: Slashdot Add to: Netscape Add to: Furl Add to: Yahoo Add to: Spurl Add to: Google Add to: Blinklist Add to: Technorati Add to: Newsvine Information




Want to share or request Oracle Tutorial articles to become a Oracle DBA. Direct your requests to webmaster@oracleonline.info